skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Babu, Jeganathan Ramesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Childhood obesity has affected the health of millions of children around the world despite vigorous efforts by health experts. The obesity epidemic in the United States has disproportionately afflicted certain racial and ethnic minority groups. African American children are more likely than other children to have obesity-related risk factors such as hyperlipidemia, diabetes, cardiovascular disease, and coronavirus disease (COVID-19). For the reduction in obesity-related health inequalities to be successful, it is essential to identify the variables affecting various groups. A notable advancement in epigenetic biology has been made over the past decade. Epigenetic changes like DNA methylation impact on many genes associated with obesity. Here, we evaluated the DNA methylation levels of the genes NRF1, FTO, and LEPR from the saliva of children using real-time quantitative PCR-based multiplex MethyLight technology. ALU was used as a reference gene, and the Percent of Methylated Reference (PMR) was calculated for each sample. European American children showed a significant increase in PMR of NRF1 and FTO in overweight/obese participants compared to normal weight, but not in African American children. After adjusting for maternal education and annual family income by regression analysis, the PMR of NRF1 and FTO was significantly associated with BMI z-score only in European American children. While for the gene LEPR, African American children had higher methylation in normal weight participants as compared to overweight/obese and no methylation difference in European American children. The PMR of LEPR was significantly negative associated with the obesity measures only in African American children. These findings contribute to a race-specific link between NRF1, FTO, and LEPR gene methylation and childhood obesity. 
    more » « less
  2. Obesity is caused by a combination of hereditary and environmental factors. Despite extensive study, contemporary through diet, exercise, education, surgery, and pharmacological treatments, no effective long-term solution has been found to this epidemic. Over the last decade, there has been a tremendous advancement in understanding the science of epigenetics, as well as a rise in public interest in learning more about the influence of diet and lifestyle choices on the health of an individual. Without affecting the underlying DNA sequence, epigenetic alterations impact gene expression. Previous animal studies have shown a link between the type of diet and expression or suppression of obesity genes, but there are very few human studies that demonstrate the relationship between dietary intake and obesity gene expression. This review highlights the effects of carbohydrates, lipids, and protein intake from the diet on obesity-related genes. 
    more » « less
  3. In recent years, obesity has reached epidemic proportions globally and has become a major public health concern. The development of obesity is likely caused by several behavioral, environmental, and genetic factors. Genomic variability among individuals is largely due to copy number variations (CNVs). Recent genome-wide association studies (GWAS) have successfully identified many loci containing CNV related to obesity. These obesity-related CNVs are informative to the diagnosis and treatment of genomic diseases. A more comprehensive classification of CNVs may provide the basis for determining how genomic diversity impacts the mechanisms of expression for obesity in children and adults of a variety of genders and ethnicities. In this review, we summarize current knowledge on the relationship between obesity and the CNV of several genomic regions, with an emphasis on genes at the following loci: 11q11, 1p21.1, 10q11.22, 10q26.3, 16q12.2, 16p12.3, and 4q25. 
    more » « less